
Software Architecture of an MMO

David Salz 

david@sandbox-interactive.com



Who am I?

 David Salz

 15 years in the industry

 CTO, Co-Founder of Sandbox Interactive

 35 people

 based in Berlin

 we only do Albion Online!



In this talk:
 What is Albion Online?

 Middleware + Design Decisions

 Server Architecture

 How we use Unity (and how not)





Albion Online
 Sandbox MMORPG
 Cross-Platform (Windows/OSX/Linux/Android/iOS)
 One World (no „Shards“ or „Servers“, not even for different platforms)
 Player-Driven Economy (everything is player-crafted)
 No Character Classes („you are what you wear“)
 Strong focus on PvP + Guilds
 Hardcore („Full Loot“ in PVP Areas)
 Pay-to-play model

 4 years in the making
 Currently in Closed Beta w/ 80.000+ „founding“ players
 „Release“ in Q4/2016



Albion Online
 The initial pitch (2012)

 Play-crafted equipment, buildings
 One World (like EVE Online)
 Guild vs. Guild Territotorial conquest
 Top-Down perspective + Combat (like League of Legends)

 Simple graphics, „can even be 2D“
 PVP focus, no PVE, no Mobs, no Dungeons
 Release in 2013 



Middleware Selection
 Engine Selection

 Unity made sense – inexpensive, accessible
 Cross-Platform was a „target of opportunity“

 Database Selection
 One world need a very scalable database, NoSQL
 Cassandra sounded suitable
 still use SQL for query-heavy problems

 Networking Middleware
 Photon! 
 can use C# on server (like in Unity!)
 works with all Unity platforms



Apache Cassandra
 NoSQL Database
 Originally developed by Facebook
 Open Source (Apache-License)
 Java

 Concept: everything is a hash table
 in-memory (as much as possible)
 optimized for high throughput
 scales horizontally (just add servers)
 redundant (no single point of failure)
 CQL: SQL-like language (w/ massive restrictions – it‘s NoSQL)



Apache Cassandra
 funny story from public Alpha Test…

 all buildings disappeared during lunch break

 found this in Cassandra Changelog:

 W(

 lesson learned: careful with cutting edge technology

* Fix possible loss of 2ndary index entries during 

compaction (CASSANDRA-6517)



Apache Cassandra
 Cassandra uses timestamps to resolve

conflicts between database nodes

 also requires exact time sync beween servers

 i.e. ntp service



Hosting
 Hosted with Softlayer

 good, but quite expensive
 bare-metal machines only
 currently: 8x 10-Core Intel Xeon, 32 GB RAM

 Should be able to handle ~15k CCUs

 Originally:
 Hosted across 2 Datacenters (better ping for players)
 Worked, but bad idea! (inter-server disconnects, latency)



Networking
 Photon

 UDP-based protocol (reliable/unreliable as needed)
 TCP for chat, inter-server communication
 use only basic message functionality (no Photon frameworks)
 mostly simple messages, in rare cases JSON content
 Had to implement secure TCP-reconnect abilities

 Chat
 Tried IRC…
 … was only trouble (difficult to secure, customize)
 Implemented own system in a couple of days



Consequences
 Server needs to work without Unity
 Ideally, client works without Unity, too!

 think: tools, stress-test-bots!

 Use Unity only as rendering front-end

 cannot rely on Unity features for basic functions!
 levels / game objects
 collision
 pathfinding



Separation

ObjectFactory ObjectViewFactory

Object

+Position

+…

+RequestAction()

ObjectView

+Renderer

+AnimationCtrl

+HandleInput()

destroyed

changed

…etc..

created

Object

+Position

+…

+RequestAction()

Server Client Unity-Client

Interest-Management

changed

…etc..

obj-enter

obj-leave



Server



Server Farm

Game Server

Game Server

Game Server

Login Server

World Server

Marketplace Server

GoldMarket Server

Statistics Server

Ranking Server

BackOffice Server

Chat Server

Client

Connect to different game

server depending on 

location in game world

Game DB

(Cassandra)

Accounts DB

(Postgres)

Market DB

(Postgres)

GoldMarket DB

(Postgres)



 Todo: screenshot of gold market



 Todo: screenshot of marketplace



Game Servers / World Server
 game world split into unique „clusters“ of ~ 1 km²

 current world: ~600, next world: x2
 distributed among game servers
 player changes servers when travelling
 handoff done through database (even on same server)

 Instances are dynamically created
 world server coordinates this

 World Server
 responsible for everything „global“
 guilds, parties, coordination of guild battles etc. 





Threading Model (Game Server)

IO Thread
IO ThreadNetwork IO 

Thread

Event 

Queue

Logging IO 

Thread

Event 

Scheduler
Cluster Thread

Event 

Queue

Event 

Scheduler
Cluster Thread

Pathfinding

Thread

Database IO 

Thread

Cluster Thread makes
request

Events / Results get
put into Event Queue

Cluster polls Events 
from Queue and
Scheduler



Threading Model
 Game logic for one game area („cluster“) is single-threaded

 Interactions between game objects too complicated otherwise; would
require lots of locking

 Objects „sleep“ whenever possible (especially mobs)

 All IO (Network, Database, Logging) and other „heavy lifting“ 
(pathfinding) offloaded to worker threads

 Instances (Player islands, instanced dungeons) are combined in thread
pools

 Other servers (chat, rankings) are completely multi-threaded



There is no spoon!
 There is no game loop!

 i.e. no Update() or Tick() functions for game objects
 Gameplay thread processes events in order of arrival

 Events are:
 Network input, i.e. player commands
 Timers (Event Scheduler)

 If an object needs a tick (Mobs do), it creates a recurring timer

 Results from DB queries (asynchronous)
 Results from pathfinding
 …



Interest Management
 Players should only „see“ (network-wise) what‘s on their screen

 important to reduce traffic…
 … and prevent cheating!

 Find objects a player can „see“ (and update when things move)
 Objects send messages to all players that „see“ them

 Needs to be efficient!
 ~500 mobs / cluster
 > 10.000 interactive objects (mostly trees )
 up to 300 players



Interest Management

grid based hash (10x10m cells)

● cells contain list of objects inside

● list is updated by object itself when moving

● cells fire events:

● ObjectEnteredCell()

● ObjectLeftCell()player

● objects also fire events

● ObjectMoved()

● ObjectDestroyed()

● EventFired()



Interest Management

player

Interest area

Moves with player

Subscribe to objects when they

enter inner area

Unsubscribe when they leave

outer area

Tell player when:

● an object enters / leaves interest area

● an object in the area fires an event



Logging infrastructure
Game Server

Game Server

Game Server

Log File

Log File

Log File

Logstash
Agent Redis

Elasic Search

Kibana

 track errors, generate statistics

 classic ELK stack (Elastic Search, Logstash, Kibana)

 kind of unreliable for us

 Also use Cassandra Counters a lot!

Logstash
Agent

Logstash
Agent

Own tools



K
ib

an
a



K
ib

an
a



Client



Level Design
 Zones built in Unity (Unity scenes)
 Consist only of Unity prefabs („tiles“)

 ~ 30.000 / level

 Collision is painted for each tile

 Level gets exported to XML format
 level loading independed from Unity (for server, client)
 in Unity: instantiate prefabs
 actually faster and more controllable! 



Level consists of

„tiles“ (Unity prefabs)

Tile has 3d collider

(for mouse picking + 

ground height

definition)

2d collision is painted

per tile

(blocks movement / 

blocks shots / blocks

placement etc.)

Ground tile

Object (non-ground) tile



Collision
 TODO: pictures, demo

Collision of all tiles

is blended together



Unity Features we (don‘t) use… 
 Do:

 Editor: cool and customizable (but often too slow)
 Sound: yes, but want to switch to Wwise or FMOD
 Mechanim: now, after a long struggle (memory usage!)

 Not or very limited:
 Scenes – only to load GUIs (but not levels)
 Collision/Physics – only raycasts @ ground
 GUI – use modified NGUI instead
 Network – use Photon instead
 Baked light – scenes way too large



Unity troubles
 funny story…

 64 bit editor came just in time for us

 32bit editor was no longer able to build our project

 used > 2.7 GB RAM during build with is the max for
win32 processes

 headless was still working!



Character rendering
 Character + Equipment gets baked into one mesh

 want 1 draw call / character (well, + special effects)
 real-time

 parts of character mesh hidden depending on equipment

 Only one material for character + all equipment items
 Only one texture; also use vertex colors, specular

 Limit number of characters drawn (esp. on mobile)





 Todo: characters picture



Debugging
 Can run and debug complete environment locally on developers

machine
 Human-readable network log file
 Server and client errors caught in log files

 Searchable, with context

 Public staging system
 Community can preview patches, updates
 QA freelancers from the community
 Frequently mirror live database to public staging system

 Can download live database to developer machines



 TODO: screenshot of network log file



Cheaters
 people started using memory debuggers and packet sniffers

pretty much on day 1
 Absolute server authority is king!
 Includes what information you reveal to client!

 only one serious cheat ever found
 mistake on our side –“believed“ data from client without proper 

check

 Gold Sellers / Account Stealing
 adding email verification greatly improved this



Cheaters
 .NET code very accessible for analysis

 camera hacks (minior problem because of interest management)
 found internal tools , cheats in code (not working on live)

 extracted data from client
 maps, player rankings
 cool community projects!

 Users built bots directly into client
 Difficult to prevent

 Obfuscation – helps, but not much
 We are doing more integrity checks now!
 Future: Unity IL2CPP ?





Future Challenges
 Growing player base…

 Want a more diverse world

 exploring more modular level design right now

 Keeping iOS / Android version in sync with server

 ability to download data files without patching

 clients support old server / server supports old clients



Thank you!
Questions / Comments?

david@sandbox-interactive.com

We are hiring!
https://albiononline.com/en/jobs


