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What is Albion Online? 

 

Albion Online is a modern 

interpretation of EVE Online with 

the skill based combat from 

League of Legends 

 

ABOUT ALBION ONLINE 



• Sandbox MMORPG 

• Cross-Platform (Windows/OSX/Linux/Android/iOS) 

• One World (no „Shards“ or „Servers“, not even for different platforms) 

 

• 4 years in the making 

• Currently in Closed Beta w/ 100.000+ „founding“ players 

• „Release“ in Q4/2016 

 

ABOUT ALBION ONLINE 



• Engine Selection: Unity 

• powerful, accessible 

• Cross-Platform was a „target of opportunity“ 

• Database Selection: Cassandra, Postgres 

• One world  need a very scalable database, NoSQL 

• still use SQL for query-heavy problems 

• Networking Middleware: Photon 

• UDP (reliable/unreliable), TCP 

• can use C# on server (like in Unity!) 

• works with all Unity platforms 

 

MIDDLEWARE SELECTION 



• NoSQL Database 

• Originally developed by Facebook 

• Open Source (Apache-License) 

• written in Java 

 

• Concept: everything is a hash table 

• in-memory (as much as possible) 

• optimized for high throughput 

• scales horizontally (just add servers) 

• redundant (no single point of failure) 

• CQL: SQL-like language (w/ massive restrictions – it‘s NoSQL) 

 

CASSANDRA 



• Server needs to work without Unity 

• Ideally, client works without Unity, too! 

• think: tools, stress-test-bots! 

 

• Use Unity only as rendering front-end 

 

• cannot rely on Unity features for basic functions! 

• levels / game objects 

• collision 

• pathfinding 

 

CONSEQUENCES 
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SEPARATION 



 

Game Server 

Game Server 

Game Server 

Login Server 

World Server 
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Statistics Server 

Ranking Server 
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Connect to different game 

server depending on 
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SERVER FARM 



• game world split into unique „clusters“ of ~ 1 km² 

• current world: ~600, next world: x2 

• distributed among game servers 

• player changes servers when travelling 

• handoff done through database (even on same server) 

 

• World Server 

• responsible for everything „global“ 

• guilds, parties, coordination of guild battles etc.  

 

SERVER FARM 
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Cluster Thread makes 
request 

 

Events / Results get 

put into Event Queue 

 

Cluster polls Events from 
Queue and Scheduler 

GAME SERVER – THREADING MODEL 



• Players should only „see“ (network-

wise) what‘s on their screen 

• important to reduce traffic… 

• … and prevent cheating! 

 

• Needs to be efficient! 

• ~500 mobs / cluster 

• > 10.000 game objects (e.g. trees) 

• up to 300 players 

 

player 

GAME SERVER – INTEREST MANAGEMENT 



 

grid based hash (10x10m cells) 

● cells contain list of objects inside 

● list is updated by object itself when moving 

● cells fire events: 

   ● ObjectEnteredCell() 

   ● ObjectLeftCell() player 

● objects also fire events 

   ● ObjectMoved() 

   ● ObjectDestroyed() 

   ● EventFired() 

GAME SERVER – INTEREST MANAGEMENT 



 

player 

Interest area 

Moves with player 

Subscribe to objects when they 

enter inner area 

Unsubscribe when they leave 

outer area 

Tell player when: 

 ● an object enters / leaves interest area 

 ● an object in the area fires an event 

GAME SERVER – INTEREST MANAGEMENT 



 

Level consists of 

„tiles“ (Unity prefabs) 

Tile has 3d collider 

(for mouse picking + 

ground height 

definition) 

2d collision is painted 

per tile 

(blocks movement / 

blocks shots / blocks 

placement etc.) 

Ground tile 

Object (non-ground) tile 

LEVEL DESIGN 



 

Collision 

• TODO: pictures, demo 

Collision of all tiles 

is blended together 

COLLISION 



• Character + Equipment 

gets baked into one 

mesh (= 1 draw call!) 

• parts of character mesh 

hidden depending on 

equipment 

• Only one material for 

character + all equipment 

items 

• Limit number of 

characters drawn (esp. 

on mobile) 

 

CHARACTER RENDERING 



 



• .NET code is very accessible for analysis 

• camera hacks (minior problem because of interest management) 

• found internal tools, cheats in code (not working on live) 

• extracted data from client  

• maps, player rankings… lead to cool community projects! 

• Users built bots directly into client  

• Difficult to prevent 

• Obfuscation – helps, but not much 

• We are doing more integrity checks now! 

• Future: Unity IL2CPP ? 

 

CHEATERS 



 



 

THE END 

Thank you! 

Questions / Comments? 

david@sandbox-interactive.com 

 


