
ALBION ONLINE: A CROSS-PLATFORM MMO

David Salz

CTO / Co-Founder
david@sandbox-interactive.com

What is Albion Online?

Albion Online is a modern

interpretation of EVE Online with

the skill based combat from

League of Legends

ABOUT ALBION ONLINE

• Sandbox MMORPG

• Cross-Platform (Windows/OSX/Linux/Android/iOS)

• One World (no „Shards“ or „Servers“, not even for different platforms)

• 4 years in the making

• Currently in Closed Beta w/ 100.000+ „founding“ players

• „Release“ in Q4/2016

ABOUT ALBION ONLINE

• Engine Selection: Unity

• powerful, accessible

• Cross-Platform was a „target of opportunity“

• Database Selection: Cassandra, Postgres

• One world  need a very scalable database, NoSQL

• still use SQL for query-heavy problems

• Networking Middleware: Photon

• UDP (reliable/unreliable), TCP

• can use C# on server (like in Unity!)

• works with all Unity platforms

MIDDLEWARE SELECTION

• NoSQL Database

• Originally developed by Facebook

• Open Source (Apache-License)

• written in Java

• Concept: everything is a hash table

• in-memory (as much as possible)

• optimized for high throughput

• scales horizontally (just add servers)

• redundant (no single point of failure)

• CQL: SQL-like language (w/ massive restrictions – it‘s NoSQL)

CASSANDRA

• Server needs to work without Unity

• Ideally, client works without Unity, too!

• think: tools, stress-test-bots!

• Use Unity only as rendering front-end

• cannot rely on Unity features for basic functions!

• levels / game objects

• collision

• pathfinding

CONSEQUENCES

ObjectFactory ObjectViewFactory

Object

+Position

+…

+RequestAction()

ObjectView

+Renderer

+AnimationCtrl

+HandleInput()

destroyed

changed

…etc..

created

Object

+Position

+…

+RequestAction()

Server Client Unity-Client

Interest-Management

changed

…etc..

obj-enter

obj-leave

manage
create create

SEPARATION

Game Server

Game Server

Game Server

Login Server

World Server

Marketplace Server

GoldMarket Server

Statistics Server

Ranking Server

BackOffice Server

Chat Server

Client

Connect to different game

server depending on

location in game world

Game DB

(Cassandra)

Accounts DB

(Postgres)

Market DB

(Postgres)

GoldMarket DB

(Postgres)

SERVER FARM

• game world split into unique „clusters“ of ~ 1 km²

• current world: ~600, next world: x2

• distributed among game servers

• player changes servers when travelling

• handoff done through database (even on same server)

• World Server

• responsible for everything „global“

• guilds, parties, coordination of guild battles etc.

SERVER FARM

IO Thread
IO Thread Network IO

Thread

Event

Queue

Logging IO

Thread

Event

Scheduler
Cluster Thread

Event

Queue

Event

Scheduler
Cluster Thread

Pathfinding

Thread

Database IO

Thread

Cluster Thread makes
request

Events / Results get

put into Event Queue

Cluster polls Events from
Queue and Scheduler

GAME SERVER – THREADING MODEL

• Players should only „see“ (network-

wise) what‘s on their screen

• important to reduce traffic…

• … and prevent cheating!

• Needs to be efficient!

• ~500 mobs / cluster

• > 10.000 game objects (e.g. trees)

• up to 300 players

player

GAME SERVER – INTEREST MANAGEMENT

grid based hash (10x10m cells)

● cells contain list of objects inside

● list is updated by object itself when moving

● cells fire events:

 ● ObjectEnteredCell()

 ● ObjectLeftCell() player

● objects also fire events

 ● ObjectMoved()

 ● ObjectDestroyed()

 ● EventFired()

GAME SERVER – INTEREST MANAGEMENT

player

Interest area

Moves with player

Subscribe to objects when they

enter inner area

Unsubscribe when they leave

outer area

Tell player when:

 ● an object enters / leaves interest area

 ● an object in the area fires an event

GAME SERVER – INTEREST MANAGEMENT

Level consists of

„tiles“ (Unity prefabs)

Tile has 3d collider

(for mouse picking +

ground height

definition)

2d collision is painted

per tile

(blocks movement /

blocks shots / blocks

placement etc.)

Ground tile

Object (non-ground) tile

LEVEL DESIGN

Collision

• TODO: pictures, demo

Collision of all tiles

is blended together

COLLISION

• Character + Equipment

gets baked into one

mesh (= 1 draw call!)

• parts of character mesh

hidden depending on

equipment

• Only one material for

character + all equipment

items

• Limit number of

characters drawn (esp.

on mobile)

CHARACTER RENDERING

• .NET code is very accessible for analysis

• camera hacks (minior problem because of interest management)

• found internal tools, cheats in code (not working on live)

• extracted data from client

• maps, player rankings… lead to cool community projects!

• Users built bots directly into client 

• Difficult to prevent

• Obfuscation – helps, but not much

• We are doing more integrity checks now!

• Future: Unity IL2CPP ?

CHEATERS

THE END

Thank you!

Questions / Comments?

david@sandbox-interactive.com

